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We report the results of a comparative study of Fourier domain analysis (FDA) and texture
analysis (TA) of optical coherence tomography (OCT) images of resected human breast tissues
for binary classi¯cation between normal�abnormal classes and benign�malignant classes. With
the incorporation of Fisher linear discriminant analysis (FLDA) in TA for feature extraction,
the TA-based algorithm provided improved diagnostic performance as compared to the FDA-
based algorithm in discriminating OCT images corresponding to breast tissues with three
di®erent pathologies. The speci¯city and sensitivity values obtained for normal�abnormal
classi¯cation were both 100%, whereas they were 90% and 85%, respectively for benign�malignant
classi¯cation.
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Optical coherence tomography (OCT) is an optical
imaging technique, which can provide noninvasive,
noncontact, high-resolution cross-sectional images
of tissue up to a depth of 1�3mm in near-real
time.1�3 The axial resolution of conventional OCT
systems is determined by the bandwidth of the light
source, and for superluminescent diode (SLD)
sources normally used in the OCT devices it is
� 10�m. This resolution is not su±cient to bring
out the cytological di®erences between the normal
and the abnormal tissues. However, due to the
pathological processes associated with a disease,
there are signi¯cant di®erences in the scattering
properties of tissues which lead to considerable

changes in the characteristic textures of the OCT
images that can be exploited by various statistical
techniques. For example, texture analysis (TA) of
OCT images was carried out for classifying di®erent
tissue types of mouse including skin, fat, abnormal
lung tissue, etc. Their success rates varied from 38%
to 95% for the three categories.4�6 Computational
techniques like Fourier-domain classi¯cation and
other periodicity-based algorithms have also been
used in OCT images for the classi¯cation of adipose,
stroma, and tumorous tissues of human breast
with sensitivity and speci¯city values in the range
of � 95% and � 65%, respectively.7 Mujat et al.8

developed algorithms for automated breast tissue
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classi¯cation based on axial scan data with sensi-
tivity and speci¯city of � 88%.8

In this paper, we report the results of a study of
the performance of algorithms based on FDA and
TA methods to di®erentiate the OCT images. We
chose formalin-¯xed resected tissues of normal
human breast, ¯broadenoma (FA), and invasive
ductal carcinoma (IDC) tumor samples. Using the
OCT images, the enhanced diagnostic ability of TA
method when coupled with Fisher's linear dis-
criminant analysis (FLDA) compared to FDA was
demonstrated. Nearest mean classi¯er (NMC) was
used for classi¯cation of the OCT images of di®erent
breast tissue types based on leave-one-out (LOO)
cross-validation method.9,10 Results show that in-
corporation of FLDA in texture-based algorithm
makes it more accurate compared to FDA.

A schematic of the OCT setup used for the
experiments is shown in Fig. 1. It comprises of an
SLD of central wavelength � 840 nm with a band-
width of � 30 nm with 5mW optical power. The
output of the SLDwas coupled to a 2� 2 optical ¯ber
coupler designed to work in the range of the wave-
length used. The coupler splits the light from the
source to sample arm and reference arm. Light beam
in the sample arm was collimated and focused to the
sample using a 10� objective. Light in the reference
arm was collimated and coupled back into the ¯ber
using a mirror at the reference arm.

The reference mirror was mounted on a linear
translational stage scanning with a velocity of
20mm/s, which results in a Doppler shift of 45 kHz.
Light re°ected from both sample arm and reference

arm was coupled back to the detection arm, and the
interference signal was detected with a photodiode
(PD). The resulting interferogram was ampli¯ed
using a transimpedance ampli¯er (TIA) and demo-
dulated using a lock-in ampli¯er. The interferogram
envelope was digitized and acquired in a PC using a
data acquisition card (DAQ). Lateral scanning was
done using a stepper motor. Software based on
Labview was used to control the entire setup. The free
space axial and lateral resolutions of the setup were
estimated to be � 11 and 17�m respectively.11 The
signal-to-noise ratio (SNR) of the setup was measured
to be � 100dB. Typical image (1;000� 100 pixels)
acquisition time was about 1min.

The pathologically characterized tissue samples
were obtained from the Pathology Department of
CHL-Apollo Hospital, Indore following resection at
surgery from patients already diagnosed of having
breast tumor. For OCT measurements reported
here, the tissue samples were kept preserved in
formalin (10%) at room temperature (24�C). Tissue
samples from only those patients were included in
the study for which the histopathological diagnosis
was unambiguous. The histopathological report
provided by the histopathologist was taken as the
\Gold Standard" for this study. The OCT images
were acquired from a total of 160 sites in breast
tissue samples obtained at surgery from 12 patients.
The healthy tissue surrounding the breast tumor
was considered \uninvolved" (normal) based on the
pathologist's assessment. The typical sample size
was � 2 cm2, and an average of 3�4 OCT images
were recorded per sample.

We used FDA and TA methods to carry out the
feature extraction and tissue classi¯cation of the
OCT image dataset. Figure 2 gives the °owchart of
the sequence followed in the study. Binary classi¯-
cation of two types were attempted: IDC-FA
(benign�malignant) classi¯cation and normal�
abnormal classi¯cation where both IDC and FA
were together categorized as abnormal. For both
these methods, the evaluation was carried out by
LOO cross-validation method.10,12 It involved using
a single dataset from the original dataset as the
validation data and the remaining observations as
the training data and repeating the same for all the
datasets. Finally, the confusion matrices were gen-
erated for quantifying the diagnostic ability of each
of the methods.

Typical images recorded in this study correspond
to a size of 2mm (depth) and 3mm (lateral). The

Fig. 1. Schematic view of the OCT setup used for acquiring
the human breast tissue images. SLD, superluminescent diode;
PD, photodiode; TIA, transimpedance ampli¯er; DAQ, data
acquisition board.
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raw image was recorded in 12 bits to a matrix of size
150 (lateral)� 1,000 (depth) which was then resized
to 400� 600 pixels using bicubic interpolation
for maintaining the optimum aspect ratio. The
upsampling in the transverse dimension did not lead
to signi¯cant changes in the diagnostic results as the
pixel size is comparable to the lateral resolution.
Image preprocessing was carried out for noise sup-
pression using thresholding and masking. Threshold
intensity level was determined by the random °uc-
tuation of intensity in the region above the tissue
sample in the OCT image. Using edge detection
technique, air tissue interface was determined and
the region above the interface was masked during
the analysis. The region below 750�m was also
masked during the analysis as there was no mor-
phological information below this depth.

The basic principle of FDA-based image classi¯-
cation is that the spatial frequency component in
axial scans (A-scans) of the tissue depends on the
characteristic periodic structure of the tissue. The
Fourier power spectrum is expected to have domi-
nant small frequency for adipose tissue due to the
large cellular structure compared to the benign or
malignant tumor tissues where the Fourier spectrum
is expected to have broad features. The variation in

the spatial frequencies for di®erent types of tissues
can be exploited for automated tissue classi¯cation.

To perform FDA-based classi¯cation, a set of
histologically categorized breast tissue sample ima-
ges were used as the input, and this formed the
training set. For each image, 512-point FFT was
evaluated for each of its A-scan and the average of
the FFT spectrum was evaluated. The next step
was the classi¯cation of the images based on the
FFT spectrum using LOOmethod. Each FFT vector
was taken out as the validation data QðkÞ, and the
average Fourier spatial spectrum ðRtissueðkÞÞ was
evaluated for all the three categories excluding the
dataset QðkÞ. QðkÞ was classi¯ed with respect to the
corresponding training set of data using nearest
mean distance classi¯er that involved minimizing
the quantity MDtissue in Eq. (1) below. The classi¯-
cation results obtained thus were saved in a con-
fusion matrix.

MDtissue ¼ jQðkÞ �RðkÞj2: ð1Þ
\Texture" is a general term used for quantifying
properties like smoothness, coarseness, regularity,
etc., of a surface. Technically, image texture is
de¯ned as a function of the spatial variation in pixel
intensities (gray values). Statistical TA techniques
exploit this correlation between di®erent pixel
intensity values and use them for computing certain
statistical parameters which ultimately characterize
the texture of the image.

In our study, we used the spatial gray-level
dependence matrix (SGLDM)-based statistical
texture analysis for the classi¯cation of OCT images
of breast tissues. SGLDM which is also termed as
gray-level co-occurrence matrix (GLCM) is pro-
duced from an image by calculating how often a
pixel with the intensity (gray-level) value i occurs in
a speci¯c spatial relationship to a pixel with the
value j.13,14 The parameter termed \distance"
determines the distance between the pixels, whose
spatial relationship is to be estimated, and \angle"
speci¯es the direction in which one pixel lies with
respect to the other. If the image is composed of L
gray-levels, then the GLCM is an LXL matrix, each
element of which is the probability, s�ði; j=dÞ of the
pixel with gray-level value i being \d " distance
away from the pixel with gray-level value j in a
certain angle �. The GLCM was evaluated for four
possible orientation angles between pixels i and j,
namely, 0�, 45�, 90�, and 135� and ¯ve di®erent
statistical parameters were evaluated from the

Fig. 2. Flowchart of the processing steps. FLDA — Fisher
linear discriminant analysis.

Binary Tissue Classi¯cation Studies on Resected Human Breast Tissues Using OCT Images 61

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
1.

04
:5

9-
66

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n 

10
/2

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



matrices. The images used for this analysis were
downsampled to eight levels from 256 gray-levels.
The optimized value of pixel distance \d " was
estimated to be 6 pixels in the rescaled images so
that the distinctive texture information in the OCT
images of each category of tissues could be extracted
for e±cient classi¯cation.

The ¯ve statistical parameters with their math-
ematical and physical signi¯cance are described in
Table 1.5,13 Here, �x and �y are the means of rows
and columns of GLCM, respectively and �x and �y

are the corresponding standard deviations. The ¯ve
parameters evaluated in four directions formed a
20-dimensional feature vector for each image. Using
LOO cross-validation, each image in the dataset
was classi¯ed into the corresponding category
keeping rest of the dataset as the training dataset
and by using NMC approach. The results thus
obtained were saved in a confusion matrix.

The e±cacy of the TA-based classi¯cation was
tested in one-dimensional space using FLDA
method used for dimensionality reduction of feature
space.15,16 If c is the number of classes, then FLDA
reduces the dimensionality to c� 1 in such a way
thatmaximum intraclass mean distance is minimized
and the interclass mean distance is maximized. This
de¯nes Fisher's criterion which is maximized over all
linear projections ðwÞ:

JðwÞ ¼ j�1 � �2j2
S 2

1 þ S 2
2

: ð2Þ

Here, � represents the mean, S 2 represents the var-
iance, and the subscripts denote the two classes.
Maximizing this criterion yields a closed-form

solution that involves the inverse of a covariance-like
matrix. The time to optimize the parameters of an
algorithm over a training set data depends on its size
and dimensionality and can vary from few seconds to
even several minutes. In contrast, the time taken
to classify an unseen image will always be a matter
of few seconds. Since the size and dimension of
the training set data in our case were 160 and 20,
respectively, the time taken for both training and
validating our algorithm took only several seconds.

Figure 3 shows the OCT images of normal,
benign, and malignant breast tissue samples recor-
ded with the setup shown in Fig. 1. Signi¯cant
di®erences in the texture of scattering pattern for
di®erent types of breast tissue samples are apparent.
Cell structure of normal fatty (adipose) tissue is seen
to be well resolvable. Since the adipose tissues are
composed of cells (85% of which is ¯lled with lipid
droplet and the rest 15% with a layer of cytoplasm
surrounding it) larger in diameter (� 100�m) with
comparatively lesser structures, they can be well
resolved in a conventional OCT system.4 On the
other hand, the FA and IDC samples have relatively
higher scattering primarily due to increased regional
cell density. As the neoplastic transformation in the
tissue changes the tissue architecture increasing the
cell density, enhanced scattering is seen in both
malignant and benign tissues. The attenuation was
relatively less for normal tissues, and distributed
scattering regions were visible. In contrast to the
low-scattering regions of adipocytes of normal tissue,
the benign and malignant samples, due to the solid
tumor, showed relatively dense and smooth scatter-
ing with the scattering intensity slightly higher for
malignant tissues as compared to the benign ones.17

Table 1. The ¯ve statistical texture parameters evaluated from GLCM.

Statistical
parameters Physical signi¯cance Mathematical description

Contrast Measures the local variations in the GLCM.
PL�1

i¼0

PL�1
j¼0 ði� jÞ2s�ði; j j dÞ

Energy Sum of squared elements in the GLCM. Also known as
uniformity or the angular second moment.

PL�1
i¼0

PL�1
j¼0 ½s�ði; j j dÞ�2

Correlation Measures the joint probability occurrence of the speci¯ed
pixel pairs.

PL�1

i¼0

PL�1

j¼0
ði��xÞðj��yÞs�ði;j j dÞ
�x�y

Entropy Measures the randomness of values of elements in GLCM.
PL�1

i¼0

PL�1
j¼0 s�ði; j j dÞ log½s�ði; j j dÞ�

Homogeneity Measures the closeness of the distribution of elements in the
GLCM to the GLCM diagonal.

PL�1
i¼0

PL�1
j¼0

1
1þði�jÞ2 s�ði; j j dÞ
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Since the scattering properties of the benign and
malignant ones were similar, their classi¯cation was
the most challenging task in this study.

The texture analysis code used in the study was
validated using Brodatz textures.4 The probability
of correct classi¯cation rates of these standard tex-
tures in our case ranged from 80% to 100% which
gave us con¯dence about the reliability of the code
we were using. Two types of classi¯cation were
attempted, FA�IDC (benign�malignant) and

normal�abnormal classi¯cation with FA and IDC
together categorized as abnormal using LOO cross-
validation method. Tables 2(a) and 2(b) summarize
the results obtained for these two types of classi¯-
cation and compares the e±cacy of FDA, TA, and
also FLDA-incorporated TA (TA�FLDA) method
for each type individually.

The confusion matrix for each type of classi¯-
cation has been tabulated above. As can be observed,
while abnormal (benignþmalignant) tissues could

Fig. 3. OCT images of normal (1st row), benign (2nd row), and malignant (3rd row) human breast tissue samples. Normal tissues
show cellular structures due to large lipid-¯lled cells, whereas benign and malignant show uniform scattering. (Depth� Lateral —
2mm� 3mm for each image.)

Table 2(a). Normal�abnormal classi¯cation.

FDA (%) TA (%) TA�FLDA (%)

Histopathology Normal Abnormal Normal Abnormal Normal Abnormal

Normal 100 0 70 30 100 0
Abnormal 17.19 82.81 17.97 82.03 0 100

Table 2(b). Benign�malignant classi¯cation.

FDA (%) TA (%) TA�FLDA (%)

Histopathology Benign Malignant Benign Malignant Benign Malignant

Benign 68 32 60.5 39.5 90 10
Malignant 29.8 70.2 59.5 40.5 15 85

Binary Tissue Classi¯cation Studies on Resected Human Breast Tissues Using OCT Images 63
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be distinguished from normal tissues with very good
con¯dence level (speci¯city and sensitivity of 100%),
the classi¯cation results for distinguishing benign
tissues from malignant ones were not that satisfac-
tory. This is to be expected since the scattering
properties of the normal sites were visually dis-
tinguishable from the benign and the malignant
sites. Both the TA and the FDA method failed to
yield satisfactory classi¯cation results for this type,
the maximum speci¯city and sensitivity obtained
being in the range of � 70%, as shown in Table 2(b).
Finally, with the incorporation of FLDA in TA, the
speci¯city and sensitivity reached up to a satisfac-
tory level of 90% and 85%, respectively. This
enhanced performance with the incorporation of
FLDA is due to the fact that FLDAprojects data in a
line that would preserve the direction useful for data
classi¯cation. In other words, it reduces the dimen-
sionality of the dataset while preserving as much of
the discriminatory information as possible.

The relative performance of the di®erent diag-
nostic algorithms was assessed by carrying out a
receiver-operating characteristic (ROC) analysis of
the corresponding classi¯cation results.18�20 An
ROC curve provides a visual comparison of the trade-
o® between sensitivity and speci¯city of a diagnostic
test. The ROC curve was generated for each diag-
nostic algorithm with respective validation dataset
by plotting the true positive rate (sensitivity) as a
function of the false positive rate (1-speci¯city) as
the classi¯cation threshold was varied. Area under
the ROC space is taken as a quantitative measure of
the performance of the algorithm. The closer the area
is to 1, the more accurate is the corresponding diag-
nostic algorithm.

Figures 4(a) and 4(b) show the ROC curves
for both types of classi¯cation. The diagnostic
performance of FDA method was observed to be
superior compared to the TA method. However,
incorporation of FLDA in TA improved the corre-
sponding AOC close to 1 almost to the idealistic
limit for normal�abnormal and close to 90% in
case of benign�malignant classi¯cation. The rela-
tive performances of the algorithms degraded from
TA�FLDA to FDA followed by TA for both types
of classi¯cations.

FDA analysis of the di®erent breast tissues
showed that the low-frequency components in the
Fourier spectra of normal tissues are more as com-
pared to that for benign or malignant samples. This
is in qualitative agreement with the studies reported

by Zysk and Boppart7 who used fresh tissues for
imaging. In our case, the Fourier power spectrum of
the normal tissues dominates over that of the
malignant ones up to a spatial frequency value of
2� 104m�1 and after that the trend reverses. The
cuto® value in our case was at � 4� 104 m�1 that is
in close agreement with the results of Zysk and
Boppart.7 TA was shown to give high classi¯cation
rates for tissue phantoms6 and di®erent tissue types
such as mouse fat versus mouse skin.4 Iftimia et al.21

used mean values of several parameters of OCT
axial scans such as signal slope, variance, power
spectrum, mean spatial frequency, etc., to di®eren-
tiate the breast tissue types with a ¯ne needle probe
and obtained � 93% accuracy in di®erentiating
fatty tissue from ¯brous or tumor tissue.
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Fig. 4. (a) ROC curve for (1) TA, (2) FDA, and (3) TA�
FLDA methods for benign�malignant classi¯cation. (b) ROC
curve for (1) TA, (2) FDA, and (3) TA�FLDA methods for
normal�abnormal tissue classi¯cation.
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The results obtained in the present study demon-
strate that OCT could be developed as a concurrent
diagnostic tool to standard histopathological pro-
cedures for clinical diagnosis of formalin-¯xed tissue
specimens.22 In a recent study, Nguyen et al.23

demonstrated potential of intraoperative real-time
OCT for detection of surgical boundaries of breast
tissues in operating room with 100% sensitivity
and 82% speci¯city. Although we also achieved
100% sensitivity and speci¯city in separating OCT
images of normal from abnormal breast tissues, it is
important to mention here that the normal breast
tissue samples used in our study were adipose tissues
with large amount of fat covering the underlying
¯brous and glandular tissues. Although due to lim-
ited sample size we have not included the ¯brous/
glandular tissues in the normal category for validat-
ing our diagnostic algorithm, results of recent studies
have demonstrated that OCT can successfully
delineate breast tumors from normal ¯brous/
glandular tissues as well.21,23 Further, it is pertinent
to mention that although in the present study we
have developed classi¯cation algorithms to discrimi-
nate OCT images of di®erent breast tissue types, the
algorithms can be used for discriminating tissue types
in other organ systems as well. For example, it has
been shown that algorithms based on texture analysis
can be used to identify lung and skin tissues.4 The
framework of the algorithm can be easily extended for
analyzing the diagnostic content of the OCT images
from fresh breast tissues as well.

It is pertinent to note that we have not employed
any feature selection method as part of the devel-
opment of the present discrimination algorithm.
This is because, it is not known a priori which subset
of features are relevant for a given classi¯cation
problem. The selection of an optimal subset of fea-
tures from a set of features is always an optimization
problem and is often facilitated by use of a perform-
ance measure for each subset of features to measure
their ability to classify the samples. Attempting a
brute-force search of the best combination of features
(combination of 2, 3, or more number of features of
the whole set of features) is impractical, because the
number of possible feature combinations can be
prohibitively large for the set of features with a high
dimension. One widely used approach is to rank the
features based on some feature ranking criteria
designed to evaluate how well an individual feature
contributes to the separation (e.g., cancer vs. normal)
and then use a ¯xed number of top ranked features as

input to the classi¯er. This method has the important
drawback in that if some of the features (say the
least ranked) are eliminated and feature ranking is
repeated, then the rank of the remaining features
changes from the previous values. Therefore, use of
this approach to generate optimal subset of features
is debatable. Moreover, the performance of FLDA is
expected not to be a®ected whether one does feature
selection prior to using FLDA.

In summary, we have carried out a comparative
study of FDA and TA for identi¯cation of three
di®erent histological tissue types of human breast
tissues. In the Fourier analysis method, the vari-
ation in spatial frequency component of A-scans in
images of each category was evaluated for tissue
classi¯cation while various statistical texture par-
ameters were evaluated in the latter to extract the
information about the local repetitive structures in
the images due to speckle. The results of the com-
putational analysis of OCT images from normal,
benign, and malignant sites show that due to the
morphological di®erences in the tissue sites, the
success rates of classi¯cation also vary depending on
the pair of validation dataset. The normal tissue
sites could be easily distinguished from the abnormal
(benign/malignant) sites with very high value of
speci¯city and sensitivity. However, distinguishing
benign from malignant sites is a more di±cult pro-
spective. Comparative study on the use of FDA and
TA showed that use of TA�FLDA hybrid algorithm
improves the e±ciency of the TA method. The
TA�FLDA combined algorithm proved successful in
increasing the accuracy of benign�malignant classi-
¯cation as compared to either TA or FDA alone.

References

1. A. F. Fercher, W. Drexler, C. K. Hitzenberger,
T. Lasser, \Optical coherence tomography — Prin-
ciples and applications," Rep. Prog. Phys. 66,
239�303 (2003).

2. A. Gh. Podoleanu, \Optical coherence tomography,"
Br. J. Radiol. 78, 976�988 (2005).

3. K. D. Rao, A. Alex, Y. Verma, S. Thampi, P. K.
Gupta, \Real-time in vivo imaging of adult Zebra¯sh
brain using optical coherence tomography," J.
Biophotonics 2, 288�291 (2009).

4. K. W. Gossage, T. Tkaczyk, J. Rodriguez, J. K.
Barton, \Texture analysis of optical coherence tom-
ography images: Feasibility for tissue classi¯cation,"
J. Biomed. Opt. 8, 570�575 (2003).

Binary Tissue Classi¯cation Studies on Resected Human Breast Tissues Using OCT Images 65

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
1.

04
:5

9-
66

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n 

10
/2

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



5. S. A. Boppart,W. Luo,D. L.Marks, K.W. Singletary,
\Optical coherence tomography: Feasibility for basic
research and image-guided surgery of breast cancer,"
Breast Cancer Res. Treat. 84, 85�97 (2004).

6. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P.
Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams,
J. K. Barton, \Texture analysis of speckle in optical
coherence tomography images of tissue phantoms,"
Phys. Med. Biol. 51, 1563�1575 (2006).

7. A. M. Zysk, S. A. Boppart, \Computational
methods for analysis of human breast tumor tissue
in optical coherence tomography images," J.
Biomed. Opt. 11, 054015 (2006).

8. M. Mujat, D. R. Ferguson, D. X. Hammer,
C. Gittins, M. Iftimia, \Automated algorithm for
breast tissue di®erentiation in optical coherence
tomography," J. Biomed. Opt. 14, 034040 (2009).

9. A. Luntz, V. Brailovsky, \On estimation of char-
acters obtained in statistical procedure of recog-
nition (in Russian)," Techicheskaya Kibernetica 3,
(1969).

10. G. C. Cawley, N. L. C. Talbot, \E±cient leave-one-
out cross validation of kernel Fisher discriminant
classi¯ers," Pattern Recogn. 36, 2585�2592 (2003).

11. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel,
P. K. Gupta, \Measurement of gradient refractive
index pro¯le of crystalline lens of ¯sheye in vivo
using optical coherence tomography," Appl. Phys. B
87, 607�610 (2007).

12. B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B.
Pitman, E. Halpern, B. E. Bouma, G. J. Tearney,
\Automated algorithm for di®erentiation of human
breast tissue using low coherence interferometry for
¯ne needle aspiration biopsy guidance," J. Biomed.
Opt. 13, 014014 (2008).

13. R. M. Haralick, K. Shanmugam, I. Dinstein,
\Texture features for image classi¯cation," IEEE
Trans. Syst. Man Cybern. SMC 3, 610�621 (1973).

14. F. Argenti, L. Alparone, G. Benelli, \Fast algor-
ithms for texture analysis using co-occurrence
matrices," IEEE Proc., Pt. F 137, 443�448 (1990).

15. B. Liefeng, L. Wang, L. Jiao, \Feature scaling for
kernel Fisher discriminant analysis using leave-one-
out cross validation," Neural Comput. 18, 961�978
(2006).

16. S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K. R.
Mullers, \Fisher discriminant analysis with kernels,"
IEEE Signal Proc. Soc., Workshop Berlin (1999).

17. P. L. Hsiung, D. R. Phatak, Y. Chen, A. D. Aguirre,
J. G. Fujimoto, J. L. Connolly, \Benign andmalignant
lesions in the human breast depicted with ultrahigh
resolution and three-dimensional optical coherence
tomography," Radiology 244, 865�874 (2007).

18. S. K. Majumder, N. Ghosh, P. K. Gupta, \Support
vector machine for optical diagnosis of cancer,"
J. Biomed. Opt. 10, 024034 (2005).

19. S. K. Majumder, N. Ghosh, P. K. Gupta, \Relevance
vector machine for optical diagnosis of cancer,"
Lasers Surg. Med. 36, 323�333 (2005).

20. J. A. Hanley, B. J. McNeil, \The meaning and use of
the area under a receiver operating characteristic
(ROC) curve," Radiology 143, 29�36 (1982).

21. N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson,
V. Danthu, D. X. Hammer, \Spectral-domain low
coherence interferometry/optical coherence tom-
ography system for ¯ne needle breast biopsy
guidance," Rev. Sci. Instrum. 80, 024302 (2009).

22. P. L. Hsiung, P. R. Nambiar, J. G. Fujimoto,
\E®ect of tissue preservation on imaging using
ultrahigh resolution optical coherence tomography,"
J. Biomed. Opt. 10, 064033 (2005).

23. F. T.Nguyen,A.M. Zysk, E. J. Chaney, J.G.Kotynek,
U. J. Oliphant, F. J. Bella¯ore, K. M. Rowland, P. A.
Johnson, S. A. Boppart, \Intraoperative evaluation of
breast tumor margins with optical coherence tomo-
graphy," Cancer Res. 69, 8790�8796 (2009).

66 M. Bhattacharjee et al.

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
1.

04
:5

9-
66

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n 

10
/2

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	BINARY TISSUE CLASSIFICATION STUDIES ON RESECTED HUMAN BREAST TISSUES USING OPTICAL COHERENCE TOMOGRAPHY IMAGES
	References


